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SUMMARY

Numerical simulation of nonlinear waves to reproduce the laboratory measurements has been a topic of
great interest in the recent past. The results reported in the literature are mainly focused on qualitative
comparison or on the relative errors between the numerical simulation and measurements in laboratory
and hence lack in revealing the existence of phase shift in nonlinear wave simulation. In this paper,
the simulation of nonlinear waves in mixed Eulerian and Lagrangian framework using finite element
method (FEM) is investigated by applying two different velocity calculation methods viz, cubic spline
and least squares (LS). The simulated wave surface elevation has been compared with the experimental
measurements. The coherence analysis has been carried out using the wavelet transformation, which
gives a better understanding between the numerical and the experimental results with respect to the
time–frequency space, compared with the conventional Fourier transformation. It is observed that the
application of cubic spline approach leads to a higher phase difference for steeper waves. The present
study has shown that the phase difference exists at the higher modes rather than at the primary period. For
waves with steepness (wave height/wave length) higher than 0.04, LS approach is found to be effective in
capturing the higher-order frequency components in the event of nonlinearity. In addition, the comparison
of numerical simulations with that from PIV measurements for the tests with solitary waves is also
reported. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The simulation of nonlinear waves using numerical wave tanks has been a problem under rigorous
testing by researchers’ world wide over the past few decades in order to reproduce the physical
phenomenon of ocean waves as close as possible. The usual procedure to validate the simulated
nonlinear waves has been by a qualitative comparison of the time histories with respect to the
laboratory generated waves. The numerical simulation of nonlinear waves can be carried out by
the conventional methods based on finite element method (FEM) and boundary element method
(BEM) using mixed Eulerian and Lagrangian (MEL) approach proposed by Longuet-Higgins and
Cokelet [1]. In this paper, FEM has been used. The above method has been successfully used by
several researchers in the past [2–4] for the simulation of fully nonlinear waves. Most researchers
adopted linear triangle element that lead to lower approximation for the velocity information, which
still remain as a problem in the application of FEM. The use of iso-parametric elements [5] and
six noded triangular elements [3] also reported the need for smoothing/regridding strategies. To
overcome this shortcoming, the other methods of velocity estimation have been proposed namely
global projection method, mapped finite difference (FD), least squares (LS) and cubic spline (CS).
It has been found that both the LS approach and mapped FD produce identical results for a wide
range of wave steepness [6], whereas, the global projection approach will lead to spurious velocity
in the simulation results as reported by Sriram et al. [4] for structured mesh. Hence, in this paper,
the results based on CS and LS approach are compared with the experimental measurements and the
phase differences are reported. The qualitative comparison between the laboratory generation and
numerical simulated waves has made by several investigators [2, 4, 6, 7], none of which revealed
the phase difference quantitatively.

The comparison of the numerical simulation of breaking waves with that from physical measure-
ments exhibits a slight deviation, which was claimed to be due to the dissipation of wave energy
in the laboratory [8]. The phase difference can exist in numerical simulation due to two main
reasons, one being the dissipation of the wave energy that results in the reduction of wave celerity
and the other being due to the effect of surface tension that leads to an increase in the wave
celerity in the laboratory generation of waves. A detailed note on this particular phase differ-
ence between the numerical and experimental measurements was attempted only for very small
wave slope by Jensen and Grue [9]. The phase difference analysis has been carried out for the
measurements of wave packets using Fourier analysis, and a difference of 0.01±0.006 rad per
wavelength was reported between the numerical and the physical measurements. Their numerical
simulation was based on a linear code. Apart from this analysis, to the best of the knowledge
of the author’s, the comparison between the nonlinear wave simulation and the corresponding
physical measurement has not been reported. The analysis can be carried out in the frequency
domain and the Fourier analysis only give mean phase angle in the time series. However, the time–
frequency evolution of the phase difference would give meaningful quantification. Schlurmann
[10] described the time–frequency methods (namely wavelet transformation and Hilbert transfor-
mation) in hydrology and hydraulic engineering and Balaji et al. [11] applied time–frequency
methods for the prediction of wave groups and breaking waves from a data buoy heave response
time history. One of the most common tools for time–frequency space is the Wavelet analysis.
By decomposing a time series into the time–frequency space, one can determine the frequency
components in the signal as well as how these components evolve with time. The readers can
refer Torrence and Compo [12] for details related to Wavelet analysis with reference to the prac-
tical implementation of the algorithms. It has been pointed out by Torrence and Compo [12] that
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in many studies, wavelet analysis has suffered from an apparent lack of quantitative results and
highlighted the importance of statistical significance test. In order to examine the comparison
between two (numerical and experimental) time series with large common power and to evaluate
the phase relationship in time frequency space, cross wavelet transformation (XWT) is adopted,
which is constructed from two continuous wavelet transform (CWT). Further, from wavelet coher-
ence (WTC) between the two CWT, one can find significant coherence even if the common power
is low. In this paper, the analyses are reported both qualitatively and quantitatively for numer-
ical simulated (by adopting CS and LS approach) and laboratory generated wave elevation time
series.

The following sections deal with a brief overview of the numerical simulation and the methods
of velocity estimation, experimental setup, Wavelet analysis and the discussions for the regular
and cnoidal waves. The results from the numerical model have been compared with particle image
velocimetry (PIV) measurements of wave particle velocity in the laboratory and the spatial velocity
comparisons for solitary wave are also reported in this paper.

2. FORMULATION AND NUMERICAL PROCEDURES

The nonlinear simulation of water waves has been carried out based on FEM using MEL approach.
The two-dimensional fluid motion is defined with respect to the fixed Cartesian coordinate system,
Oxz, with the z axis positive upwards from still water level. The water depth h is assumed to be
a constant. The fluid is assumed to be incompressible and the flow as irrotational. Viscous forces
have been neglected. This simplifies the flow problem that can be governed by Laplace’s equation
involving velocity potential �(x, z) given by,

∇2�=0 (1)

The schematic representation of the computational domain with the wave maker at one end and
the prescribed Neumann and Dirichlet boundary conditions, on the three boundaries (bottom, left
and right) as well as at the free surface are shown in Figure 1.
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Figure 1. Computational domain with specified boundaries.
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Considering the flume bottom (�B) as flat and no flow through it, the impermeable condition
becomes

��

�z
=0 at z=−h on �B (2)

The far field is a fully reflecting (�∞) wall at a distance ‘l’ from the wave paddle, leading to

��

�x
=0 at x= l on �∞ (3)

Motion of the wave paddle at the left end can be enforced by

��

�x
= •
x p(t) at x= xp(t) on �p (4)

where xp(t) is the time history of wave paddle motion. The nonlinear dynamic free-surface
condition in the Lagrangian system is given by

dx

dt
= ��

�x
(5a)

dz

dt
= ��

�z
−v(x)z (5b)

d�

dt
= 1

2
∇�∇�−g�−v(x)� (5c)

where v(x) is a damping coefficient defined as [13],

v(x)=

⎧⎪⎨
⎪⎩
0 x<L−Lbeach

�beach

(
x−(L−Lbeach)

Lbeach

)2

L−Lbeach�x�L
(6)

The frequency to be damped on the beach (�beach) is used to control the strength of the damping
zone, while the parameter Lbeach (beach length) is used to control the length of the damping zone.

The solution for the above boundary value problem is sought using FEM in this paper. In contrast
with a linear boundary value problem, the water particle velocity at the free surface need to be
evaluated in order to extract the free surface elevation at each time step. Once the velocity potential
is obtained from FEM, the free surface horizontal and vertical velocities can be evaluated. However,
the need for smoothing or regridding arises due to the inaccurate evaluation of the velocity from
the velocity potential. Herein a brief review of the formulation and algorithm is provided.

Formulating the governing Laplace’s equation constrained with the associated boundary condi-
tions would lead to the following finite element system of equations [14]:∫

�
∇Ni

m∑
j=1

� j∇N j d�| j,i /∈�s =−
∫

�p

Ni
•
x p(t)d�−

∫
�

∇Ni

m∑
j=1

� j∇N jd�| j∈�s ,i /∈�s (7)
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where ‘m’ is the total number of nodes in the domain and the potential inside an element �(x, z)
can be expressed in terms of its nodal potentials, � j , as

�(x, z)=
n∑
j=1

� j N j (x, z) (8)

Herein, N j is the shape function and n is the number of nodes in an element. The above formulation
does not have any singularity effect at the intersection point between the free surface and the
boundaries, compared with other methods like BEM, boundary integral element method [14].
Linear triangular element is adopted. At the time of the initial simulation (t=0), the free surface
elevation �(x,0) and velocity potential, �(x, z,0) at the free surface are assumed to be zero for
the wave generation problem.

At the subsequent time steps, for estimating the vertical velocity from the velocity potential, the
backward FD method for unequal spacing of second order is used. The estimation of horizontal
velocity is carried out based on CS approach proposed by Sriram et al. [4] and the LS approach
by Turnbull et al. [15].

2.1. Velocity calculation methods

2.1.1. Least-squares approach. The LS approach to estimate the horizontal velocity is explained
briefly as follows. Consider an arbitrary free surface node (i) connected to k neighboring nodes
in the finite element mesh. Let (Xk,Yk) denotes the position vector connected to the free surface
node (i) to the nth (n=1, . . . ,k) node under consideration. Then, the velocities are estimated by
using the following LS approximation in the matrix form as

⎛
⎜⎜⎜⎝

k∑
n=1

x,nl x,
n
l

k∑
n=1

x,nl z,
n
l

k∑
n=1

x,nl z,
n
l

k∑
n=1

z,nl z,
n
l

⎞
⎟⎟⎟⎠

{
u

v

}
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k∑
n=1

x,nl �,nl

k∑
n=1

z,nl �,nl

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9a)

where

x,nl = (xi −xn)√
(xi −xn)2+(zi −zn)2

, z,nl = (zi −zn)√
(xi −xn)2+(zi −zn)2

�,nl = (�i −�n)√
(xi −xn)2+(zi −zn)2

The above equation reduces to the following, if one knows the vertical velocity at i th node(v).

ui =
∑k

n=1 x,
n
l �,nl −∑k

n=1 x,
n
l z,

n
l vi∑k

n=1 x,
n
l x,

n
l

(9b)

Similar procedure but without normalizing by the distance has been implemented in three-
dimensional tanks also [2]. Ma and Yan [16] used a similar LS method to estimate the tangential
velocities instead of u velocity and the normal derivative has been estimated using FD method.
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2.1.2. Cubic spline approach. In order to minimize the need for smoothing or regridding, splines
are used as a velocity calculation method. Splines provide a better approximation of the behavior
of functions that have abrupt local changes. Further, splines perform better than higher-order poly-
nomial approximations. The efficient implementation of CSs as numerical differentiation for the
evaluation of the tangential velocity in the simulation of waves using the lower-order BEM has been
adopted by Sen et al. [17]. Sriram et al. [4] evaluated the horizontal velocity by fitting a CS to the
‘x’-coordinates and �(x, z) values. The end conditions are considered as the natural spline condi-
tion. To evaluate the smooth first derivative at the i th node, five nodes are considered (with two nodes
on either side of the i th node) in order to minimize the effect of boundary constraints (natural spline
condition).

Let us consider that fi , f ′
i , f

′′
i , are continuous over a given interval. Based on the continuity

condition, one can derive [18],

�xi
6

f ′′
i−1+

�xi +�xi+1

3
f ′′
i + �xi+1

6
f ′′
i+1= 1

�xi+1
( fi+1− fi )− 1

�xi
( fi − fi−1)

i=2,3 . . .k−1 (10a)

The above equation leads to a set of (k−2) linear equations for the k unknown functional values,
fi . The horizontal spacing (�x) between the two nodes is a known parameter. The above stated
equation is solved by using the tridiagonal system of matrix assuming that the second derivatives at
the ends are zero, i.e. the natural spline condition. In the present simulation, assuming fi =�i , the
derivatives at a particular node are found out by considering two nodes on either side (k=5), with
the second derivatives (�′′

i−2,�
′′
i+2) at the end nodes being set to zero. Following the evaluation of

the second derivatives, the first derivatives can be estimated using Equation (10a) at the required
node, which are derived in the intermediate steps of the CS interpolation

2 f ′′
i + f ′′

i+1= 6

�xi

(
fi+1− fi

�xi
− f ′

i

)
(10b)

It should be noted that the above formula is valid only for calculating at the intermediate nodes
and not at the inner boundary nodes. At the wave board, the velocity is assumed to be the input
velocity and the velocity at the second node is evaluated by interpolation between the wave board
and the third node (which will be known by the above method). Similarly, at the end of tank, the
velocity is assumed to be zero.

A brief algorithm is given below. Assume the initial velocity potential and surface elevation.
Digitize the entire domain using the required number of nodes and establish the element connectivity
using a simple node generation formulae as in Wu and Eatock Taylor [14]. Apply FEM to obtain the
velocity potential inside the fluid domain. The main part in the simulation is the velocity estimation.
Recover the horizontal velocity using the suitable methodology on the free surface. Based on the
velocities, update the free surface nodes using the dynamic and kinematic boundary condition
based on Lagrangian/semi-Lagrangian form. The integration is carried out using the fourth-order
Runge–Kutta method that requires repeated evaluation of velocity potential and velocity at the
intermittent time steps to obtain the position at next time step. After the computation of the new
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free surface position and velocity potential, repeat the calculations as many times required until
the termination time.

3. EXPERIMENTAL DETAILS

The experiments on the generation of regular and cnoidal waves were carried out in the wave
flume at Franzius-Institute, University of Hannover, Germany. The flume is 100m long, 2m wide
and 4m deep. The water depth was adopted as 0.61m in all the study. The existing system of
water circulation to cool the wave paddle to avoid friction between the wave maker and the side
walls was not working satisfactorily; thus, necessitating the usage of water through an external
pipe leading to an increase in water level. An increase in the water level by about 2 cm in the
flume was noticed and hence the measurement of water depth was carried out prior to every run.
This plays a major role in the numerical simulation. Six numbers of wave probes were deployed in
the wave flume at distances 4.849m (WP1), 20.146m (WP2), 25.136m (WP3), 30.425m (WP4),
40.406m (WP5) and 50.609m (WP6) from the wave paddle. The distances were measured using
laser distometer. The input to the numerical model is from the feedback signal of the wave paddle
in the flume. The input signal, water depth and the location of the measurement of time histories
for a particular run are important parameters in the experiments that are essential for comparing
the results with numerical simulation.

The generation of solitary waves was carried out in a glass flume, 24m long, 0.3m wide and
0.5m deep at University of Wuppertal, Germany. A water depth of 0.2145m for these studies was
considered. This flume is equipped with a wave maker driven by a digital motor to which signals
can be provided with high precision. The wave histories were recorded using Ultrasonic sensors
at distances of 1.743m and 6.74m from the wave maker. The PIV measurements of water particle
velocities were carried out at 3.45m using the high-speed CCD camera having the resolution
of 256×256 pixels. The camera is placed at 1.45m (focus) from the center of the flume. The
minimum focusing distance of the camera is 1m. The field of view (FOV) is 0.26×0.26m. The
sampling interval for recording and for analysis was 0.002 s and 0.004 s, respectively.

4. WAVELET ANALYSIS

4.1. General

The analyses of the time series from numerical and experimental studies were carried out using
the wavelet analysis. In this section, a brief overview about wavelet analysis, a suitable tool for the
analysis of the transient, non-stationary or time-varying phenomena is provided. The theoretical
background of wavelet analysis is described by Daubechies [19], whereas the details of wavelets are
given by Weng and Lau [20] and Torrence and Compo [12]. In the context of Ocean Engineering,
the wavelet transform has been successfully used to understand the dispersion of ocean waves
[21], wave growth and breaking [22] and more recently for the identification of different types of
ocean waves [11]. Wavelets are similar to, but, an extension of Fourier analysis and Computational
wise, the wavelet transformation is similar to the fast fourier transformation and hence, it is an
alternative to classical windowed fourier transformation. The major difference when compared
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Figure 2. Regular wave (R1): (a) Input velocity; (b) time history at 4.849m; (c) time history
at 25.136m; and (d) time history at 50.609m.
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Figure 3. Fourier Spectrum at (a) 4.895m (R1) and (b) 50.609m (R1). Wavelet power for EXP
at (c) 4.895m (R1) and (d) 50.609m (R1).

with the windowed fourier transformation is that the window in wavelet is already oscillating and
is called mother wavelet, which is, in general, a non-harmonic functions.

4.2. Continuous wavelet transform (CWT)

In order to define a function �(t) as mother wavelet, it must satisfy the following conditions:

(1) The function should be a zero mean process, so that it is inversible. This is known as the
admissibility condition. Thus, the original signal can be obtained from the wavelet coefficients
through the inverse transform.

(2) The function must have unitary energy, i.e.∫ ∞

−∞
|�(t)|2 dt=1 (11)

This assures that the wavelet function has a compact support or has a fast amplitude decay enabling
physical domain localization.

The Morlet wavelet, consisting of a plane wave modulated by Gaussian, is taken as the mother
wavelet for the present study, which has been widely used by several researchers. It is proved to
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Figure 4. Cross Wavelet between (a) EXP-CS at 4.895m (R1) and (b) EXP-LS at 4.895m (R1). Wavelet
Coherence between (c) EXP-CS at 4.895m (R1) and (d) EXP-LS at 4.895m (R1).

be efficient for its application to Ocean and Coastal Engineering problems due to its Gaussian
nature [21, 22]. It is defined as

�(t)=�−1/4ei�0te−t2/2 (12)

where �0 is the dimensionless frequency and is taken as 6 based on Farge [23] in order to satisfy
admissibility condition.

The CWT [CWT,Wx (a, t)] of a one-dimensional signal x(t) is given as

Wx (a, t)= 1√|a|
∫ ∞

−∞
x(t) ·�∗

(
t−�

a

)
dt (13)

in which �∗ is the scaled and translated version of basis function. Herein, ‘a’ is the scaling factor
and ‘�’ is the translating or shifting factor and ‘1/

√
a’ is the normalization factor to ensure that

all wavelets have the same energy. The signal x(t) is bounded in time so the wavelet transform
is affected by edge effects, called as the cone of influence (COI) [12]. Statistical significance was
also estimated against a red noise model as proposed by them.
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Table I. Wavelet phase angle for the test case T =1.92s, H =0.04m, D=0.613m (R1).

WP 1 WP2 WP3 WP4 WP5 WP6
Wavelet (deg.) (deg.) (deg.) (deg.) (deg.) (deg.)

XWT1 0.49±12.204 −2.24±14.22 −2.74±29.03 −1.42±23.44 −1.22±13.58 −4.38±6.33
WTC1 −0.52±20.6 −2.62±22.42 −5.25±35.60 −1.56±22.03 −2.14±37.51 −0.96±23.05
XWT2 0.51±12.26 −2.30±13.95 −2.74±28.99 −1.46±23.37 −1.28±13.52 −4.41±6.32
WTC2 −0.51±19.19 −2.55±24.01 −5.68±37.03 −1.55±22.40 −1.85±38.45 −1.41±24.48

XWT1 and WTC1: EXPxCS, XWT2 and WTC2: EXPxLS, WP1=4.8495m; WP2=20.146m; WP3=25.136m;
WP4=30.425m; WP5=40.406m; and WP6=50.609m.

4.3. Cross wavelet transform (XWT)

The analysis of the covariance of two time series (experimental and numerical) has been carried
out using the cross wavelet transformation. The cross wavelet transform of the two time series
x(t) and y(t) with wavelet transform, Wx and Wy is defined as

Wxy(a, t)=Wx (a, t)W ∗
y (a, t) (14)

where the asterisk denotes complex conjugate. The phase angle of Wxy describes the phase
relationship between x and y, whereas the power is obtained from the magnitude of Wxy in the
time–frequency space. In the present paper, the main interest is the phase difference between
the components of the two time series, the mean and estimated confidence interval of the phase
difference. The circular mean of a set of angles within the 5% statistical significant region (or 95%
confidence) are estimated as in Zar [24], whereas, the confidence interval is difficult to interpret
and hence, it is find out using the circular standard deviation [25].

4.4. Wavelet coherence (WTC)

This is an estimation of the intensity of the covariance of any two given time series in time–
frequency space, unlike the XWT power, which is the estimation of common powers. Coherence
(R) has been defined [26] as

R2(a, t)= |S(s−1Wxy(a, t))|2
S(s−1|Wx (a, t)|2) ·S(s−1|Wy(a, t)|2) (15)

where S is a smoothing operator, defined as, S(W )= Sscale(Stime(W (a, t))). The scales in the time
and frequency over which S is smoothening define the scales at which the coherence measures
the covariance of the time histories considered. Torrence and Webster [26] reported the natural
way to design the smoothing operator for the Morlet wavelet. The coherence significant levels was
estimated using Monte Carlo methods with red noise to determine the 5% statistical significance
level [25]. The circular mean as well as the confidence interval are calculated similar to XWT. The
reason for the difference between the phase angles reported for the cross wavelet and coherence
methods is because of the smoothing operator used in the coherence method.
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Table II. Wavelet phase angle for the test case T =1.92s, H =0.2m, D=0.621m (R2).

WP1 WP2 WP3 WP4 WP5 WP6
Wavelet (deg.) (deg.) (deg.) (deg.) (deg.) (deg.)

XWT1 −5.56±15.76 33.95±17.45 44.21±25.47 57.75±29.96 71.58±38.14 78.83±48.36
WTC1 1.93±26.65 12.25±34.69 28.10±40.92 28.45±49.20 31.18±66.86 36.52±73.99
XWT2 −4.79±2.678 −3.76±8.10 −1.50±5.21 3.32±7.00 8.91±4.760 9.74±5.51
WTC2 −2.11±24.05 −0.61±24.12 0.07±22.84 5.85±25.25 5.28±35.32 6.51±38.95

XWT1 and WTC1: EXPxCS, XWT2 and WTC2: EXPxLS, WP1=4.8495m; WP2=20.146m; WP3=25.136m;
WP4=30.425m; WP5=40.406m; and WP6=50.609m.

Table III. Wavelet phase angle variation for different mesh sizes with a constant time steps (T/100)
at: (a) WP3 (R2) and (b) WP6 (R2).

No. of nodes on
the free surface
per wave length XWT for EXP-LS WTC for EXP-LS XWT for EXP-CS WTC for EXP-CS

(a)
30 2.27±8.45 2.85±24.06 47.09±27.02 29.64±41.88
40 −1.50±5.21 0.07±22.85 44.21±25.47 28.10±40.92
50 −2.56±2.80 −0.72±21.92 43.03±24.47 27.49±39.5

(b)
30 24.54±13.01 16.52±44.51 84.16±76.43 37.191±51.86
40 9.74±5.51 6.51±38.95 78.83±48.36 36.52±73.99
50 4.85±3.20 3.19±25.90 77.136±47.17 35.81±73.09

Table IV. Wavelet Phase angle variation for different time step with a constant mesh sizes
(L/40) at: (a) WP3 (R2) and (b) WP6 (R2).

Time step per XWT for WTC for XWT for WTC for
wave period EXP-LS EXP-LS EXP-CS EXP-CS

(a)
60 −1.08±5.24 0.20±26.00 44.90±24.90 29.76±44.50
100 −1.50±5.21 0.07±22.85 44.21±25.47 28.10±40.92
120 −1.99±5.36 −0.42±22.94 44.07±26.62 28.03±41.41

(b)
60 12.40±6.56 7.19±45.32 82.21±47.58 40.80±82.56
100 9.74±5.51 6.51±38.95 78.83±48.36 36.52±73.99
120 9.80±5.60 5.73±39.67 78.28±52.55 32.28±75.04

5. RESULTS AND DISCUSSION

5.1. Regular waves

The experiments were carried out to generate a regular wave with a period of 1.92 s, and two
diffeent wave heights, corresponding to wave steepness of 0.01 and 0.047. In numerical modeling,
the number of nodes used in the horizontal and vertical directions is 1101 and 21, respectively. For
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Figure 8. Cnoidal wave (CN1): (a) input velocity; (b) time history at 4.849m; (c) time history at 25.136m;
and (d) time history at 50.609m.

the case of CS approach, no regridding is applied, whereas, the regridding has been carried out
for every 40 time steps while adopting the LS approach. The time step used for the calculations
is 0.02 s. The numerical setup is kept constant for all the wave simulation reported in this paper,
unless and otherwise quoted. The comparison of time histories from the experimental measurement
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Figure 9. (a) Fourier spectrum at 50.609m (CN1); (b) wavelet power for EXP at 50.609m (CN1). Cross
wavelet between (c) EXP-CS at 50.609m (CN1) and (d) EXP-LS at 50.609m (CN1). Wavelet coherence

between (e) EXP-CS at 50.609m (CN1) and (f) EXP-LS at 50.609m (CN1).

and the numerical simulations at various locations along the length of the tank for waves with a
steepness of 0.01 (wave height of 0.04m) is shown in Figure 2. The input paddle velocity has been
obtained by differentiating the measured paddle displacement, which resulted in spurious noises in
the signal as can be seen in Figure 2(a). The wave surface elevation at a distance of 4.849, 25.136
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Table V. Wavelet phase angle for the test case T =6.4s, H =0.03m, D=0.619m (CN1).

WP1 WP2 WP3 WP4 WP5 WP6
Wavelet (deg.) (deg.) (deg.) (deg.) (deg.) (deg.)

XWT1 −2.28±1.571 2.18±4.21 1.71±6.057 3.59±1.84 4.40±2.4762 1.05±2.15
WTC1 −1.82±39.73 5.11±34.09 0.00±28.427 6.25±34.61 −2.68±39.10 3.01±36.58
XWT2 −2.49±1.470 0.62±2.81 0.28±4.9812 2.05±1.56 2.44±1.8406 −1.40±1.94
WTC2 −1.36±37.08 4.66±35.38 −1.06±29.00 5.36±32.11 −3.91±39.14 0.96±36.16

XWT1 and WTC1: EXPxCS, XWT2 and WTC2: EXPxLS, WP1=4.8495m; WP2=20.146m; WP3=25.136m;
WP4=30.425m; WP5=40.406m; and WP6=50.609m.

and 50.609m are shown in Figures 2(b), (c) and (d), respectively. An excellent comparison between
the numerical simulation based on CS and LS approaches with that of experimental measurements
(EXP) can be seen from the above figures. The wave spectra for the surface elevation near the
paddle (WP1) and far away from the paddle (WP6) are depicted in Figures 3(a) and (b). The wavelet
power spectra for the experimental measurements at WP1 and WP6 are shown in Figures 3(c)
and (d), respectively. The measured wave period is found to be close to 1.92 s. The COI where
edge effects might have influence is shown as a white shade (the values within this region are
presumably reduced in magnitude due to zero padding), the thick black contour designates the
95% confidence contours (energy concentration). In order to reveal the difference between the
two time histories near to the paddle, the cross wavelet power and phase difference are shown in
Figures 4(a) and (b) for EXP against CS and EXP against LS, respectively. The arrows indicate the
relative phase difference between the two time series: the arrows pointing to the right indicate the
in-phase, whereas the left arrows indicate out-of-phase. The arrows pointing downward indicate
that the numerical simulation exhibits a phase shift of about 90◦ with respect to the experimental
measurements. The figure shows that within the 95% energy concentration, the simulated time
series is in phase with the experimental observation. The quantitative mean phase angle in the
XWT for EXP-CS is −2.28◦±1.571◦ (± indicates error estimated using the circular standard
deviation), whereas for EXP-LS it is −2.49◦±1.470◦. The cross wavelet shows the existence of
high common power between the two time series and, in order to reveal the phase lock behavior,
the wave coherent transform is used. The squared wavelet coherent transform for EXP-CS and
EXP-LS is shown in Figures 4(c) and (d), respectively. The area of the 95% confidence contour is
large compared with the cross wavelet power, which shows the intensity of covariance irrespective
of high common power. Significant wavelet coherence is found to exist for the wave period less
than 1 s. In the region of primary frequency, the time series are in-phase as indicated by arrows
and scattered elsewhere. The mean phase angle for squared WTC of EXP-CS and EXP-LS is
−1.82◦±39.73◦ and −1.36◦±37.08◦, respectively. Similar kind of wavelet analysis has been
carried out for all the time series measured at six different locations along the flume and only the
quantitative results are depicted in Table I.

The numerical and experimental measurements for the wave height of 0.2m along the various
locations of the tank are shown in Figure 5. This simulation corresponds to a steepness of 0.047.
When the distance from the wave paddle increases, the CS approach shows a slight phase shift even
though the wave height is maintained constant. Qualitative wavelet analysis has been reported for
the two time series for this case, one near to the paddle and the other far away from the paddle. The
power spectra from fourier analysis for the wave surface elevation time histories at 4.895m show
the concentration of energy at 0.52 and 1.05Hz, due to the existence of nonlinearity (Figure 6(a)).
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Figure 10. Cnoidal wave (CN2): (a) input velocity; (b) time history at 4.849m; (c) time history at 25.136m;
and (d) time history at 50.609m.

The wavelet power spectrum for the experimental measurement is also shown in Figure 6(b). The
XWT for EXP-CS and EXP-LS is shown in Figures 6(c) and (d), respectively. For a medium
steep wave, the time series of EXP-CS are in-phase at the primary period of 1.92 s, whereas, a
positive phase difference at the secondary mode is observed. In the case of EXP-LS, the waves
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Figure 11. (a) Fourier spectrum at 50.609m (CN2); (b) wavelet power for EXP at 50.609m (CN2). Cross
wavelet between (c) EXP-CS at 50.609m (CN2) and (d) EXP-LS at 50.609m (CN2). Wavelet coherence

between (e) EXP-CS at 50.609m (CN2) and (f) EXP-LS at 50.609m (CN2).

are found to be in-phase within the 95% confidence contours. The squared WTC also reveals a
similar behavior as shown in Figures 6(e) and (f). The XWT mean phase angle is −4.95◦±15.24◦
and −4.79◦±2.678◦ for EXP-CS and EXP-LS, respectively. A larger error for the CS approach
has been noted compared with the LS approach. The power spectra from fourier analysis, CWT
for experimental data, XWT and squared WTC for the time histories far away from the paddle are
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reported in Figure 7. The CS approach is found to advance compared to the measured wave surface
elevation towards its direction of propagation. For the CS approach, this is noticed in the wavelet
results both for primary as well as for secondary mode, whereas, such a difference is noticed only
in secondary mode while adopting the LS approach. The quantitative results of this case for all the
time series are presented in Table II. The phase shift is found to increase for CS approach compared
to that for the LS approach. The reason for the CS method unable to capture the high-frequency
waves is that a spline curve is fitted only on the free surface with 2 points on either side of the
node under consideration. The x-coordinates and potential values at the respective locations are
being used to evaluate the velocities, irrespective of the z values. Hence, when the waves become
highly nonlinear, it is unable to capture the high-frequency oscillation, because of the smooth
fitting of the CS approach. While, the LS method uses the underlying nodes also, i.e. the mesh
nodes that connect the node under considerations, hence it is able to capture the high-frequency
oscillations that encounters in the nonlinear waves. Thus, an algorithm that evaluates the velocity
based on the nodes underlying the mesh will provide a better approximation when dealing with
nonlinear wave simulation using FEM. Moreover, the phase angle is not a constant over the length
of the tank which may be due to the uncertainty in the location of wave probes along the flume
for the measurement of the wave time history. Probable reason for the small deviation in the lower
period may be due to the fact that the input signal (paddle displacement) obtained from the paddle
for the low period got polluted by the noisy signal when one differentiate to obtain the paddle
velocity.

In order to know the wavelet phase angle error with respect to mesh size and time step, the
mesh and time-independent studies are carried out for the steep regular waves. The number of
nodes along the z-direction is kept constant and the number of nodes on the free surface is tested
for three cases (L/30, L/40 and L/50, where L is wave length) with a constant time step of
T/100 (wherein, T is wave period). The result for these test cases at WP3 and WP6 is shown
in Table III(a) and (b), respectively. The table shows that as the mesh sizes increases the error
tends to reduce and the optimum value is L/40. The numerical tests are then carried out for three
different time steps (T/60, T/100 and T/120) with the constant mesh size (L/40). The results
are shown in Table IV(a) and (b) for the wave gauge location at WP3 and WP6. The table shows
that as the time step reduces the wavelet phase angle reduces and the optimum value is T/100.

5.2. Cnoidal waves

The nonlinearity in a shallow water wave is relatively more and is of practical relevance compared
to the regular waves of higher-order propagating near the coast. Hence, an attempt has been made

Table VI. Wavelet phase angle for the test case T =6.4s, H =0.3m, D=0.62m (CN2).

WP1 WP2 WP3 WP4 WP5 WP6
Wavelet (deg.) (deg.) (deg.) (deg.) (deg.) (deg.)

XWT1 6.4±5.62 12.11±21.84 13.70±17.50 19.43±17.30 19.86±19.04 19.72±17.91
WTC1 8.04±25.6 8.88±26.83 10.91±30.77 13.30±32.74 14.44±33.44 12.87±33.19
XWT2 1.59±3.37 2.16±11.68 2.14±9.26 3.59±7.56 2.95±4.72 0.57±4.08
WTC2 4.29±21.4 2.07±22.60 3.36±26.22 3.59±27.06 2.60±25.94 1.06±25.95

XWT1 and WTC1: EXPxCS, XWT2 and WTC2: EXPxLS, WP1=4.8495m; WP2=20.146m; WP3=25.136m;
WP4=30.425m; WP5=40.406m; and WP6=50.609m.
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Figure 12. Cnoidal wave (CN3): (a) input velocity; (b) time history at 4.849m; (c) time history at 25.136m;
and (d) time history at 50.609m.

to understand the performance of the present numerical code for the simulation of shallow water
waves such as cnoidal and solitary waves. In this section cnoidal waves of different characteristics
were generated in the laboratory with Ursell parameter of 30, 307 and 41 that corresponds to CN1
(H =0.03m,T =6.4s), CN2 (H =0.3m,T =6.4s) and CN3 (H =0.2m,T =3.2s), respectively.
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Figure 13. Fourier and wavelet spectrum for time history near to the paddle (CN3). (a) Fourier power
spectra and (b) wavelet power for EXP.

Table VII. Wavelet phase angle for the test case T =3.2s, H =0.2m, D=0.621m (CN3).

WP1 WP2 WP3 WP4 WP5 WP6
Wavelet (deg.) (deg.) (deg.) (deg.) (deg.) (deg.)

XWT1 3.19±4.42 11.67±7.87 12.00±6.52 15.95±9.9 20.43±12.30 16.39±9.32
WTC1 1.09±20.94 7.97±21.95 9.65±23.36 10.67±24.69 14.3±34.87 8.61±28.09
XWT2 0.12±3.14 1.49±2.85 0.76±1.57 5.71±4.68 2.60±3.12 −0.54±2.85
WTC2 0.21±20.35 0.43±18.84 0.79±20.93 3.68±21.50 1.93±29.66 −1.00±26.03

XWT1 and WTC1: EXPxCS, XWT2 and WTC2: EXPxLS, WP1=4.8495m; WP2=20.146m; WP3=25.136m;
WP4=30.425m; WP5=40.406m; and WP6=50.609m.

The wave paddle signal is generated from the cnoidal wave theory and obviously the generated
profile will not be stable during propagation due to the dispersion of many frequency components.
A more stable cnoidal wave form could be achieved by using the formulation of Goring [27]. Since
the main objective of this paper is to investigate the physical and numerical aspects of nonlinear
wave simulation, a simple approach of wave generation using cnoidal wave theory is sought. The
input wave paddle velocity and the generated wave elevation at a distance of 4.84m, 25.136m
and 50.609m from the wave paddle are depicted in Figure 8. The simulated wave profile using
the approaches of CS and LS are superposed. An excellent agreement between both the numerical
approaches with the measurements can be seen. The frequency spectrum of wave elevation at 50m
(Figure 9(a)) shows the peak period of 6.4 s. However, the spectrum is found to be broad. The
corresponding wavelet power spectrum for the measurement (Figure 9(b)) shows that the 95%
energy is concentrated within the wave period ranging between 1.5 to 1.8 s with a peak around
6.4 s. The phase angle estimated using XWT (Figures 9(c) and (d)) shows that in both the cases
of CS and LS, the secondary mode (near 3 s) shows a positive phase shift, whereas the wave near
the primary period is in-phase. The squared WTC is also shown in Figures 9(e) and (f) and the
quantitative phase angle information inside the 95% energy levels is presented in Table V for all
the simulated cnoidal profiles.
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Figure 14. Comparison between numerical (line) and experiments (dotted). (a) H/d=0.1; (b) H/d=0.2;
(c) H/d=0.3; and (d) H/d=0.4.

The measured time wave elevation history for CN2 and the numerical simulation at various
distances from the paddle are shown in Figure 10. The comparison is found to be excellent. The
measured and simulated frequency spectra for the wave elevation at 50.609m are superposed in
Figure 11(a). The experimental CWT (Figure 11(b)) shows a peak wave period of 6 s and the
energy spreads over a period ranging from 0.5 to 8 s. The XWT shown in Figures 11(c) and (d)
reveal that the simulation with CS approach exhibits a phase lag except near the primary period,
while simulation using LS shows a lesser phase lag. However, the squared WTC (Figures 11(e)
and (f)) shows a larger significant coherence for both the approaches of numerical simulation. The
quantitative phase lag inside the 95% energy level is given in Table VI.

The measured wave elevation and its comparison with the simulation from the two numerical
approaches for a wave period of 3.2 s (CN3) are shown in Figure 12. The fourier spectrum and
CWT for the measured wave elevation near the paddle are shown in Figures 13(a) and (b). The
energy concentration occurs over a period range of 0.5 s to 4 s, with a peak at 3.2 s. The analyses
on XWT and WTC reveal similar observation as that for CN2. The mean phase angles in the 95%
energy level for all the wave probes used in the laboratory investigation are reported in Table VII.
For small wave steepness, the phase difference is found to be small, while for the medium wave
steepness, the phase difference is very high for CS compared with that of LS approach.

5.3. Solitary wave

The generation of solitary waves has been carried out at University of Wuppertal, Germany. The
generation of solitary waves by prescribing the piston-type wave maker motion is determined from
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Figure 15. Snap shots of the water flowing through the side walls.
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Figure 17. Comparison of time histories for experiments (dotted), least square (line), and cubic spline
(dashed line). (a) H/d=0.1; (b) H/d=0.2; (c) H/d=0.3; (d) H/d=0.4; and (e) H/d=0.5.

the first-order Boussinesq wave theory [27]. The surface profile has been measured using ultrasonic
probe at two locations. The experiments were carried out for H/d=0.1–0.5. Figures 14(a–d)
present the comparison of measured wave elevation with the numerical simulation (based on LS). A
slightly broader wave profile can be seen in the numerical simulation compared with the measured
wave surface elevation for waves with smaller steepness. The simulation peak magnitude is also
found to be higher. For steep waves, though the wave height remains the same, the width of the
simulated solitons is wider. This is due to the difference in the displaced mass of the water even
though the paddle signal is same. The loss of volume of water is accounted for the water flowing
backward to the paddle through the gap between the wave paddle and the side walls when the
paddle set into motion. As the width of the flume is small, this effect is more pronounced. The
reason for the wave height remaining unchanged for the steeper waves is due to the fact that the
paddle stroke is quite fast when compared with smaller steepness. This feature has been captured

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1381–1410
DOI: 10.1002/fld



QUANTIFICATION OF PHASE SHIFT 1407

√(u2+v2) (m/s)√(u2+v2) (m/s)

√(u2+v2) (m/s) √(u2+v2) (m/s)

-0.3

-0.2

-0.1

0

0.1

z 
(m

)

0.28

-0.3

-0.2

-0.1

0

0.1

z 
(m

)

0.3

-0.3

-0.2

-0.1

0

0.1

z 
(m

)

0.3

-0.3

-0.2

-0.1

0

0.1

0.2

z 
(m

)

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.36 0.4 0.44

0.4 0.5 0.6 0.7 0.80.4 0.5 0.6

(a) (b)

(c) (d)

Figure 18. Velocity comparison between experiments (closed circle), LS (open circle) and cubic spline
(triangle). (a) H/h=0.2; (b) H/h=0.3; (c) H/h=0.4; and (d) H/h=0.5.

using a high-speed camera and the various snap shots of the water flowing through the gaps are
shown in Figure 15. One can minimize this effect by adjusting the input signal to generate the
target wave height and profile using trial and error method. The input signal for the numerical
model (i.e. the generated signal) and the signal given to the paddle (i.e. tuned signal) to generate
a wave with specified characteristics are shown in Figure 16 for H/d=0.1. Since, the paddle
displacements are different and the comparisons are made based on the wave profile alone, the
wavelet analysis is not carried out. The comparison between the numerical simulation (CS and
LS) and experimental measurements for waves with steepness ranging from 0.1 to 0.5 is shown in
Figure 17. An interesting feature can be noted. After the soliton propagates, the oscillation is below
the mean water surface (zero level), which once again proves that the water is flowing back through
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Figure 19. Spatial velocity information using experimental PIV measurement (left) and numerical
simulation (right) for H/d=0.5.

the side of the wave paddle after reaching the extreme position of the wave paddle. This eventually
reduces the trailing waves that should be presented in solitary wave generation. But attempts are
being made by several researchers for the minimization of trailing waves [28]. For higher wave
steepness, the numerically simulated trailing waves are different from the measurement. CS shows
a phase difference for steepness above 0.4. In order to reveal the water particle motion, due to
which the phase difference exists, PIV measurements were carried out.

MATPIV developed by Sveen [29] has been used for the analysis. The comparison between the
numerical simulation (LS and CS) and the experimental measurement for particle velocity at the
crest is shown in Figure 18. The CS simulated particle velocity is taken at the crest irrespective of
the phase difference. The figure shows a good comparison for velocity magnitudes using LS with
that of EXP. The CS shows lower velocity magnitude for H/d greater than 0.4. The spatial velocity
information using PIV and numerical simulation (LS) for H/d=0.5 is depicted in Figure 19.

6. CONCLUSION

In this paper, the quantitative and qualitative analyses on the phase difference between the numerical
wave simulation based on FEM and experimental measurements are reported. Two approaches
for estimating the horizontal velocities based on CS and LS approaches have been explored in
detail. The analysis has been carried out using the time–frequency analysis based on wavelets.
The common high power has been shown using the cross wavelet transformation and phase lock
behaviors are revealed using wavelet coherence. The analysis reveals that the waves simulated
using CS lead the laboratory-generated steep waves. Even though the LS approach also leads the
generated wave in the flume, the phase difference is found to be less compared with the former
approach of simulation. The phase difference exists not at the primary period under investigation,
but at the higher modes. Further, in our investigation the phase difference is not consistent along
the length of the tank. The solitary wave measurements and the comparison with the numerical
simulation are reported along with the crest particle velocity. CS and LS simulation behavior
are same for small steep waves, whereas, the later approach shows promising for the medium
to high steep waves. As the errors are minimal, both these approaches are quite acceptable and
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the numerical simulation can be successfully used as a replacement for physical modeling when
simulation demands.

NOMENCLATURE

LS least square approach
CS cubic spline approach
EXP experimental measurements
CWT continuous wavelet transform
XWT cross wavelet transform
WTC wavelet coherence
FEM finite element method
PIV particle image velocimetry
MEL mixed Eulerian and Lagrangian approach
COI cone of influence
FOV field of view
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